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Chapter I

Introduction

This is the final report on NASA Grant No. NAG 1-1479 entitled, "Compu-

tational Aeroacoustics and Numerical Simulation of Supersonic Jets." The

Principal Investigators are Drs. Philip J. Morris and Lyle N. Long of the

Department of Aerospace Engineering at the Pennsylvania State University.

The research project has been a computational study of computational

aeroacoustics algorithms and numerical simulations of the flow and noise of

supersonic jets. During this study a new method for the implementation

of solid wall bo_mdary conditions for complex geometries in three dimen-

sions has been developed. In addition, a detailed study of the simulation

of the flow in and noise from supersonic circular and rectangular jets has

been conducted. Extensive comparisons have been made with experimental

measurements. A summary of the results of the research program are at-

tached as the main body of this report in the form of two publications. In

addition, the report lists the names of the students who were supported by

this grant, their degrees, and the titles of their dissertations. In addition,

a list of presentations and publications made by the Principal Investigators

and the research students is also included.

2



Chapter 2

Publications and Presentations

Morris, P. J., Long, L. N., Chung, C. and Chyczewski, T., "Computa-

tional aeroacoustics algorithms: nonuniform grids," AIAA Paper 94-2295,

25th AIAA Fluid Dynamics Conference, June 1994.

Chung, C. and Morris, P. J., "Wave propagation and scattering in com-

putational aeroacoustics," ICASE/LaRC Workshop in Benchmark Problems

in Computational Aeroacoustics, Hampton, VA, October 1994.

Morris, P. J., Chung, C. and Pautet, L. R., "Acoustic scattering: a nu-

merical simulation," 47th APS/Division of Fluid Dynamics Meeting, Atlanta,
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Chung, C. and Morris, P. J., "A new boundary treatment for two- and

three-dimensional acoustic scattering problems," AIAA/CEAS Aeroacoustics

Conference, Mlmich, Germany, June 1995.
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dimensional bodies," submitted for publication to J. Computational Acous-
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coustics," Ph.D. thesis, Aerospace Engineering, 1995. Present Occupation:
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In this paper we consider the scattering of sound by two- and three-dimensional bodies with
arbitrary geometries. Particular emphasis is placed on the methodology for the implementation of
solid wall boundary conditions for high-order, high-bandwidth numerical schemes. The Impedance
Mismatch Method (IMM) is introduced to treat solid wall boundaries. In this method the solid
wall is simulated using a wall region in which the characteristic impedance is set to a different
value from that in the fluid region. This method has many advantages over traditional solid wall

boundary treatments, including simplicity of coding, speed of computation and the ability to treat
curved boundaries. This method has been used to solve a number of acoustic scattering problems

to demonstrate its effectiveness. These problems include acoustic reflections from an infinite plate,
acoustic scattering from a two-dimensional finite plate and a cylinder, and acoustic scattering by

a sphere and a cylindrical shell.

1. Introduction

Acoustic scattering by solid bodies is of importance in engineering noise prediction and

control. In order to simulate acoustic scattering accurately, we need high-order numerical

schemes as well as methods to implement solid wall boundary conditions for such high-order

schemes. In recent years, a number of high-order schemes have been developed. One of them

is the Dispersion-Relation-Preserving (DRP) scheme developed by Tam and Webb T. This

scheme is used in this paper.

The most important consideration in computations of acoustic scattering by solid bodies

is the implementation of solid wall boundary conditions. For inviscid flow the solid wall

boundary condition requires that the velocity normal to the wall is zero. For low-order finite

difference schemes or finite volume schemes, the imposition of solid wall boundary conditions

can usually be carried out in a straightforward manner (Khan et al 3, Huh et al 2);Though,

it should be noted that in these references, the problem was reformulated to solve for the

scattered field only. For high-order finite difference schemes, treatment of the wall condition

is complicated and it has had little investigation. Recently, Tam and Dong 6 proposed a way

to implement solid wall boundary conditions for high-order finite difference DRP schemes.

In their method, ghost points are needed and the seven-point central difference spatial stencil
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must be changed to a one-sided stencil when computations are performed at grid points

within three rows of the solid surface. For an object with a simple geometry, such as a flat

plate, this solid wall boundary condition can be used relatively easily. But for a complicated

surface where the boundary is curved, the implementation of this wall boundary condition

involves considerable work in coding and long computer times. This is especially true if

the calculations are to be performed on computers with parallel architecture. Kurbatskii

and Tam 4 have extended the plane wall boundary method of Tam and Dong 6 to two-

dimensional curved walls.

In this paper we introduce a very efficient method to implement solid wall boundary

conditions. This is the Impedance Mismatch Method (IMM). This method can be applied

easily to high-order finite difference schemes. In this method the solid wall is simulated

using a wall region in which the characteristic impedance is set to a different value from

that in the fluid region. When acoustic waves encounter the interface between the two

different regions, they will be reflected in-phase; the interface acts just like a solid surface.

Actually, in this method, no wall boundary conditions need to be implemented, all that

is needed is to define a body region and to set a different characteristic impedance in this

region. Since this method does not involve any changes in the stencil, it can be used to

represent the geometry of any object without difficulty. Also it makes the computation

much faster and coding much simpler compared to traditional ways of dealing with solid

wall boundaries.

In the next section of this paper, the one-dimensional linearized Euler equations are used

to introduce the Impedance Mismatch Method. Then several numerical simulations are

performed for acoustic scattering by two-dimensional bodies, including acoustic reflection

from an infinite plate, and acoustic scattering from a finite plate and from a cylinder.

Following that, acoustic scattering by three-dimensional bodies is computed. Examples

include acoustic scattering by a sphere and a cylindrical shell. The numerical results are

compared with either analytical solutions or solutions obtained using traditional solid wall

boundary conditions. Finally, the advantages and some disadvantages of the IMM are given.

2. The Impedance Mismatch Method (IMM)

In this section a one-dimensional example is used to fix the idea of the IMM. First, the

elementary problem of plane wave reflections is presented to introduce the characteristic

impedance. However, it is found that when a direct simulation of this problem is extended

to two dimensions a numerical instability occurs. In order to overcome this difficulty, an

auxiliary problem is proposed. Analysis shows that the auxiliary problem gives the same

solution as the physical problem in the region of interest external to the body.

2.1. The Physical Problem

From classical acoustics theory, it is known that when a plane wave in a fluid medium

impinges normally to the boundary of a contiguous second medium, a reflected wave is

generated in the first medium and a transmitted wave moves into the second medium. The

ratio of the pressure amplitude of the reflected wave to that of incident wave depends on
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the characteristic impedances, pa, of the two media, the pressure amplitude ratio is given

by

IPr/Pil -- p2a2 -- plal (2.1)
p2a2 + plal

where Pi, Pr are the incident and reflected pressures respectively; Pl and p2 are the mean

densities in the first and second media respectively, and al and a2 are respective speeds

of sound. This relation is obtained using the conditions that the pressure and the particle

velocity are continuous at the boundary between the two media. This means that the

normal derivatives of the pressure and the particle velocity are discontinuous. When the

second medium has a much higher characteristic impedance, most of the wave energy is

reflected. As the ratio of the characteristic impedance of the second medium to the first

approaches infinity, all the incident waves are reflected. The second medium acts like a solid

object. Thus, setting a higher'impedance in a certain region can be used to simulate the

effect of a solid object in this region. This is the basic idea behind the IMM. In the present

formulation the speed of sound inside and outside the body is kept the same. This means

that the wave speed is constant throughout the domain and permits the CFL number to be

kept at almost the same value as when no object is present. Thus, it is the mean density

in the wall region that is modified to provide the impedance mismatch.

This problem is governed by the linearized Euler equations. The one-dimensional form

of these equations without mean flow is

Op Ou
0"--/+ P°_xx = 0 (2.2)

Ou 10p
0---t + - 0 (2.3)po Ox

Op+ poach_=o (2.4)
Ot U _

In above equations, all quantities are nondimensionalized by characteristic scales: the mesh

size of the numerical simulation (Ax = Ay) for a length scale; the ambient speed of sound

(aamb) for a velocity scale; the ambient density (Pamb) for a density scale; 2Pambaamb for a

pressure scale. P0 is the nondimensionalized mean density and a0 is the nondimensionalized

local mean sound speed, a0 is equal to unity at all points for a constant speed of sound and

P0 is equal to unity exterior to the body.

An initial value problem is now solved to test the IMM. The computational domain is

-100 <_ x <_ 100. The wall region is 50 _< x < 100, inside which the mean density, P2 = 30.

An acoustic pulse is generated in the center of the domain at t = 0. The initial conditions

are

In 2 x_
p=p=exp(--_- ), u=0 (2.5)

Figure 1 shows the computed pressure distribution at t = 75, At = 0.05. The analytical

solution is also plotted. The first pulse from the left-travelling disturbance from the initial

pulse. The second pulse is the reflected wave from the interface at x = 50, also traveling

to the left. The third pulse is the transmitted wave, traveling to the right inside the wall
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Fig. 1. Pressure at t = 75 for the one-dimensional physical problem.

region. It can be seen that the pressure wave has been reflected after it encounters the

interface at x = 50. The agreement between the computed and analytical solutions is good,

but some small errors can still be seen in the plot. These errors are mainly due to the finite

choice of the mean density in the wall region P2 and ambiguities about the exact position

of the wall boundary. These issues are discussed in later sections.

The above example demonstrates that the IMM is applicable to this simple one- dimen-

sional problem; however, when this method is used in multi-dimensional cases, instability

occurs when the same time step is used. It is perhaps surprising that the one-dimensional

problem gives any form of accurate solution. In Eqs. (2.3) and (2.4), the time derivatives
are continuous functions. The coefficients and the spatial derivatives are only piecewise

continuous and it is only in combination that they produce continuous functions. Finite-

difference approximations depend on the smoothness of the function for accuracy. This is

particularly true for high-order finite-difference approximations. Thus the finite-difference

approximation to the spatial derivative will be inaccurate in the present case in the vicinity

of the interface. So the large discontinuity in the coefficient (PO/Pamb) will not be balanced

by an accurate discontinuous behavior in the approximation to the spatial derivative. In

order to overcome this problem, an auxiliary problem is introduced in which the discon-

tinuous coefficients are combined with the primitive variables under the spatial derivative

operator.
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2.2. The Auxiliary Problem

The 1-D linearized Euler equations without mean flow are re-written as

Op Of_
0-7+ _ = 0 (2.6)
Ou 0/5
0--_+ _xx = 0 (2.7)

Op + O_
0-7 _ = 0 (2.8)

where t5 = P/Po, £t = upo,/5 = P/Po. Note that a0 equals unity. This set of equations is

the same as that in the physical problem in the fluid region and wall region, but not at the

interface, since p0 is only piecewise uniform and has a jump at interface. For this set of

equations, the coefficients are continuous. The condition is imposed that variables t_, £t and

t5 are also continuous at the interface of the two media. This is not the physical problem

or interface condition. For a normal incident plane wave, the pressure amplitude of the

reflected waves is found to be

1/02 - 1 (2.9)
I/5,//5,1- l/m ¥ 1

If the wall region still mimics a solid wall in this case, then the mean density in the

wall region must be set to a lower value instead of a higher value than that in the fluid

region. This assumes that the mean speed of sound is kept the same in both the fluid and

the wall regions. Since P0 is always unity in the fluid region, the physical solution then can

be obtained in this region from the solution of this auxiliary problem.
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Fig. 2. Pressure at t = 75 for the

one-dimensional auxiliary problem.

Fig. 3. Pressure at t = 75 for the

one-dimensional auxiliary problem for different

density ratios.

The same initial value problem has been solved by setting P2 = 1/30 in the wall region.

However, this time, the auxiliary problem is implemented. Figure 2 shows the computed
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pressure distribution at t = 75. The analytical solution is also plotted. It can be seen

that the physical solution is obtained in the fluid region, and the agreement between the

computed and analytical solutions is good.

Figure 3 also shows the pressure distributions for different mean density ratios in the wall

region. It can be seen that the accuracy of computations depends on the density ratio; the

smaller the ratio, the more closely the numerical simulation follows the rigid wall solution.

But, it has been found numerically that this density ratio can not be set infinitely small

due to the stability considerations. This is one of the sources of inaccuracies in the IMM.

3. Governing Equations and Algorithms

In this paper the governing equations to be solved are the linearized Euler equations.

For three-dimensional flows with a mean flow only in x direction, they have the form

OU OE OF OG

0--'[+ -_x + -_y + _ = H (3.10)

where

V

P

v ,E=

11)

P

Mp + pou

Mu + p/po
Mv

Mw

Mp + p0u

pov pow
0 0

F= p/po , G= 0 ,
o P/Po

pov poW

M is the mean flow Mach number and H is a source term. All the quantities are non-

dimensionalized as in the previous section.

The Dispersion-Relation-Preserving (DRP) method developed by Tam and Webb 7 has

been used to discretize these equations. The DRP scheme is an optimized fourth-order

central finite difference scheme with a seven-point stencil in space and an optimized second-

order multistep scheme in time. Non-reflecting boundary conditions are needed at the

outer boundaries of the computational domain. The asymptotic non-reflecting boundary

conditions of Tam and Webb 7 have been used for the two-dimensional computations in

this paper and they have also been extended for the three-dimensional cases. The complete

description and derivation of the schemes and the non-reflecting boundary conditions are

given by Chung 1

4. Acoustic Reflection and Scattering by Two-Dimensional Bodies

In this section a number of numerical examples are given of acoustic reflection and

scattering by 2-d bodies. Solutions are obtained using the IMM and are compared with
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either analytical solutions or numerical solutions obtained using the solid wall boundary

conditions proposed by Tam and Dong 6

4.1. Acoustic Reflection of A Single Initial Acoustic Pulse By An Infinite Flat Solid

Wall
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Fig. 4. Sketch of Computational Domain for Infinite Wall Reflection Problem.

First, the acoustic reflection of a two-dimensional acoustic pulse by a plane wall is

considered. This is shown schematically in figure 4. The wall is located at y -- 0. This is

an initial value problem. An acoustic pulse is generated by an initial pressure disturbance

with a Gaussian spatial distribution. The initial conditions are:

In 2 2
p=p=exp{--_-[x +(y-25)2]}, u=v=0

(4.11)

The source is placed at (0,25). The fluid domain is 201 by 201. There is uniform mean flow

with Mach number 0.5 parallel to the wall. The time step, At is 0.05.

In order to simulate the infinite wall using the IMM, an extra wall region is needed as

shown in figure 4. The thickness of this wall region is chosen to be 40. This thickness could

be smaller, but in that case the source would be too close to the non-reflecting boundary

of the total domain, and some wave reflections would occur at the bottom boundary. An

extra wall region is needed only such wall situations at the boundary of the domain, not
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for scattering by finite objects. The computations are then carried out directly. No stencil

change is needed, no solid wall boundary conditions are implemented. The presence of the

wall does not affect the speed of computations. Even though the extra wall region increases

the amount of computations, the overall computing time is decreased compared to that

using traditional solid wall boundary conditions.

p

o.o_,.nTl
_o_u6ml

o.0111111
4o11_I11
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-tO0 _oO 0 GO 100

Fig. 5. Pressure Contours at t = 100 for Reflection of an Acoustic Pulse by an Infinite Wall With Mean
Flow Mach Number M = 0.5.
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Fig. 6. Pressure distribution on y axis and x = 50 at time t = 100 for Reflection of an Acoustic Pulse by an
Infinite Wall With Mean Flow Mach Number M = 0.5.

Figure 5 shows a calculated pressure contour associated with the acoustic pulse at t =

100. At this time, the pulse has reached the wall and has been reflected off the wall creating

a double pulse pattern. The entire pulse has been translated downstream by the mean flow.

Figure 6 shows the corresponding computed pressure waveform along the line x = 50, which

passes the center of the pulse. The numerical result is compared with the analytical solution

and the agreement is good. But some small errors can still be seen in the reflected waveform,

both in its amplitude and phase. The amplitude error is mainly due to the finite choice of

mean density ratio. This was discussed in section 2. The phase error is caused by the fact

that the location of the wall can not be defined exactly. This is discussed further in the



Acoustic Scattering in Two- and Three-Dimensions 9

following example.

4.2. Acoustic Reflection of Time Periodic Acoustic Waves By An Infinite Flat Solid

Wall

The reflection of a periodic acoustic wave train by a solid wall is considered in the absence

of a mean flow. The computational domain and the locations of the wall and the source

are the same as in the previous example. The acoustic wave train is generated by a time

periodic source in the energy equation. The source takes the form

H = 0.01exp{ ln2
(25/8) 2 [x2 + (y - 25)2]} cos(wt) (4.12)

w is the angular frequency. 10 points per wavelength are used, so that w = 7r/5.
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40
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Fig. 7. Pressure Contours at t = 180 for Reflection of Acoustic Wave Train by Infinite Wall.

The simulation is carried out with zero initial conditions. After the transient solution

has propagated out of the computational domain, the pressure fluctuation is time periodic

with an angular frequency w. Figure 7 shows the computed pressure contours adjacent to
the solid wall at time t = 180 in the left half of the domain. The interference pattern is

due to cancellation between the incident and the reflected waves. Figure 8(a) gives the

corresponding pressure waveform along the y-axis. The analytical solution is also plotted.

Noticeable errors can be seen in both the amplitude and the phase. In this case the wall is

located at y = 0 in the analytical solution. Figure 8(b) also shows the pressure waveforms

at the same time, but in this case the position of the wall is at y = 0.5 in the analytical

solution. It can be seen that the agreement between the computed and analytical solutions is

much better. This simulation demonstrates that there is a one grid spacing (Ay) inaccuracy

in the definition of the wall position in the IMM. The mean density ratio in the IMM is

specified in the following way: P0 = 1/30 when y <_ 0; P0 = 1 when y > 1, so the wall could
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Fig. 8. Pressure Distribution on y axis at x = 0 and t = 180 for Reflection of Acoustic Wave Train by
Infinite Wall. For Analytical Solutions, Wall is at (a) y = 0.0, (b) y = 0.5.

be anywhere between y = 0 and y = 1 and the numerical solution could be unchanged.

This is disadvantage of the IMM. If the source is not too close to the wall, or enough grid

points are used between the source and the wall, then this error is in the acceptable range.

But this disadvantage can have a positive effect when curved solid boundary problems axe

solved using the IMM. This is shown in the following example.

4.3. Acoustic Scattering of Time Periodic Acoustic Waves By A Finite Flat Plate

J 8L

!

i 4 AI Y
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Ltx! O- ....
!
!
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i 3L[i
1 i

T T

Fig. 9. Sketch of Computational Domain for Finite Plate Scattering Problem

The scattering of a periodic acoustic wave train by a thin flat plate of finite length is

considered as shown in figure 9. The length of the plate, L = 25. The domain is 8L by 8L.
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Fig. 10. Pressure Contours at t = 194 for Scattering of Periodic Source by a Finite Plate
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Fig. 11. Pressure Distribution Along Upper Boundary of Computational Domain for Scattering of Periodic
Source by a Finite Plate

The plate is located at the center of the computational domain. The acoustic waves are

generated by a simple harmonic source located at a distance of L from the middle point of

the plate. The source term is incorporated into the energy equation and has the form

H = 0.01 exp{ ln2
(L/8)2 [x 2 + (y - 25)2]} cos(wt) (4.13)

In this numerical simulation, L = 4A, so w = 27r/A = 0.327r. This is only approximately 6

points per wavelength.

The computations are conducted using two methods: the IMM and the solid wall bound-

ary conditions developed by Tam and Dong 6. The thickness of the plate is Ay in the IMM,

and zero in the solid wall boundary condition method. The pressure on the two sides of the

plate is different, so in the IMM at least one Ay of thickness is needed. That is, in two rows

of length L, the mean density equals 1/30. When an acoustic wave train impinges on the

plate, the wave is scattered. In the shadow region behind the plate, acoustic waves radiated

directly from the source are blocked so the sound pressure consists only of the contributions



12 Acoustic Scatterin9 in Two- and Three-Dimensions

from waves diffracted by the two sharp ends of the plate. Figure 10 shows the pressure

contours computed using the IMM at time t = 194. The diffraction pattern behind the

plate and the scattering pattern in front of the plate can be seen clearly. Figure 11 shows

the corresponding pressure distributions along the upper boundary of the computational

domain obtained from both the IMM and Tam and Dong's method 6. The agreement be-

tween the two solutions is very good. The computing time for the IMM is two-thirds that

for Tam and Dong's method. Also, the coding in the IMM is extremely simple. In the

IMM, the amount of coding work and the computing time do not change at all when there

is an solid object present. This is one of the major advantages of the IMM.

4.4. Acoustic Scattering of Time Periodic Acoustic Waves By A Circular Cylinder
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!
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3LI
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I

V

Fig. 12. Sketch of Computational Domain for Circular Cylinder Scattering Problem

The scattering of a periodic acoustic wave train by a circular cylinder is considered next.

This is sketched in figure 12. The computational domain is 201 by 201. The cylinder is

placed at the center of the domain and has a diameter D = 25. The acoustic wave train is

still generated by a time periodic source in the energy equation. The source and its location

are the same as those described in section 4.2.

The important difficulty in this example is how to deal with the curved solid bound-

aries. Uniform Cartesian grids and high-order finite difference DRP schemes have been

used throughout this paper. The use of a uniform grid has advantages in the maintenance

of good dispersion and dissipation properties, as does the high-order finite difference DRP

scheme. However, their use also presents a problem. This is the non-conformity of the grids

with the boundaries of curved bodies. Kurbatskii and Tam 4 have recently introduced a

technique for Cartesian treatment of curved walls for high-order finite-difference schemes.

In the present calculations we used the nearest grid points to the boundary to define the

body shape. So the curved boundary is approximated by a staircase boundary. This results
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Fig. 13. Pressure Contours at t = 180 for Scattering of Periodic Source by a Circular Cylinder.
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Fig. 14. Pressure Distribution Along Upper Boundary of Computational Domain for Scattering of Periodic

Source by a Circular Cylinder

in some errors in the computation. But, as demonstrated in the following example, this

error may be small if the IMM is used. For the circular cylinder, the wall region is defined

as (X2 -k- y2)1/2 __ D/2. Inside this region, the mean density is set equal to 1/30. This is all

that is needed in order to define the presence of the cylinder. After this the computations

are carried out directly. It is obvious that the coding work and computing time are the

same with or without the object. Also, there is no difference at all if the boundary is curved

or flat. This is the most important advantage of the IMM.

Figure 13 shows the pressure contours computed at time t = 180. The scattering pattern

behind and in front of the cylinder is seen clearly. Figure 14 shows the pressure distribution

along the upper boundary of the computational domain. The analytical solution is also

shown. The agreement between the computed and analytical results is good. It can be

concluded that the use of a stair-stepped surface to approximate the curved boundary is a

reasonable approximation in the IMM. Since in the IMM the position of the object surface
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could be anywhere in a range of one grid spacing, this has a smoothing effect on the staircase

surface and makes the surface approximation more accurate. It can be seen that the IMM

is a very efficient and convenient method to treat curved boundaries.

5. Acoustic Reflection and Scattering From 3-D Bodies

In this section, two problems of acoustic scattering by three-dimensional bodies are solved

using the IMM. The first problem is the acoustic scattering of a time periodic acoustic wave

by a sphere. This is an axisymmetric 3-d problem. The analytic solution is given by

Morris 5 and is compared with the numerical solutions. The second problem is acoustic

radiation and scattering from a cylindrical shell with a acoustic source placed inside the

shell. No analytical solutions are available for this problem, so that only numerical results

are presented.

5.1. Acoustic Scattering of Time Periodic Acoustic Waves By A Sphere

Z

i

I s"

i .s'
l i"

! i .s"

I i s's
I i ,s"

I i s ._
I j,.

I i ./

| i s "S

I i s"

! .i Q

12.5i!_.i__65 .....................["]_-_'_-_-_-_'_"

SourCe (0,-16,0' I / /

," I / 51

_, 51
I !

. .,/'¢y
.J

j.J

[
51

Fig. 15. Sketch of Computational Domain for Sphere Scattering Problem

The scattering of a periodic acoustic wave train by a sphere is considered as shown in

figure 15. The domain is 51x51x51. The sphere is placed at the center of the computational

domain. This is also the origin of the coordinates. The sphere diameter is D = 12.5. The

acoustic wave train is generated by a time periodic source in the energy equation. The

source term has the form

ln2 2
H = 0.01 exp{ _[x

(5.14)
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W isthe angularfrequency.I0 pointsper wavelength are used,so thatw --_/5. The center

of the sourceisat (0,-16,0).

ow,

i;

Fig. 16. Pressure Contours at t = 45 for Scattering of Periodic Source by a Sphere.

The sphere is the wall region, which is defined by x/x 2 + y2 + z _ <_ D/2. Inside this

region, p0 = 1/30. It is clear that the boundary of the sphere is approximated by a staircase

boundary. Figure 16 shows the computed pressure contours at the z -- 0 section at time

t = 45. This section passes through the center of the sphere. The scattering pattern behind

and in front of the sphere is clear. Figure 17 is the pressure waveform along the x-axis at

this section and at the same time. Figure 18 is the pressure waveform along the y-axis.

The numerical results may be compared with the analytical results and good agreements

are achieved. Most of the disagreement occurs because of the relatively coarse grid used in

this simulation.

This numerical example demonstrates that the IMM is applicable to 3-d acoustic scatter-

ing problems. The coding work would be tremendous if the traditional solid wall boundary

conditions were used for 3-d scattering cases. For the IMM, there is no extra coding work

and computation time at all when the 3-d scatterers exist.

5.2. Acoustic Radiation and Scattering of Time Periodic Acoustic Waves Inside A

Cylindrical Shell

As a final example, the radiation and scattering of a periodic acoustic wave train inside

a cylindrical shell is considered. The acoustic wave train is generated by a time periodic

source in the energy equation, the same as that in section 5.1, located at (0,0,0). The

domain is 51x51x51. The shell is placed at the center of the domain. The inner radius of

the shell is rl = 6.25, the outer radius is r2 = 9.25. The thickness of the shell is 3. The

length of the shell is h = 26 and the axis of the shell aligns with z-axis. The computational

domain is sketched in figure 19.

The wall of the shell is defined as rt < v/_ + y2 _< r2, and [zI < 13. Inside this region

P0 = 1/30. So the inner and outer boundaries of the shell are all approximated by staircase

boundaries. As an example of the calculated pressure contours figure 21 shows the pressure



16 Acoustic Scattering in Two- and Three-Dimensions

4.0E-3 ........... T s ' ' ' ' '

-- numerical

/"_l- analytical

0.0E0

-2"0E-3-25 -I5 -5 5 15 25

X

Fig. 17. Pressure Distribution Along x-axis at time t = 45 for Scattering of a Periodic Source by a

Sphere.
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Fig. 18. Pressure Distribution Along y-axis at time t = 45 for Scattering of a Periodic Source by a

Sphere.

contours at section y = 0, which cuts through the center of the shell. It can be seen that

when an acoustic source is placed inside the shell, the acoustic waves can radiate from the

two open ends. These two open ends diffract waves and act like sources for the external

acoustic field. Outside the shell the pressure field is stronger closer to the ends, and weaker

away the ends. Inside the shell a standing wave pattern can be seen

This numerical simulation demonstrated that the IMM can deal with various kinds of

3-d objects very easily. The complex geometries, so long as they reasonably smooth, do not

represent any difficulty in the IMM.

6. Conclusions

In this paper we have introduced an efficient method to simulate solid wall boundaries,

the Impedance Mismatch Method. This method was applied to a number of 2-d and 3-d
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scattering problems with both fiat and curved boundaries. Many advantages of the IMM

have been found and demonstrated. No special solid wall boundary conditions need to

be implemented. No stencil changes are involved because of the presence of solid objects

and the coding is very easy. The computations are much faster than when the traditional

solid wall boundary treatments are used. There is no difficulty for any reasonable smooth

geometry. No matter whether the solid boundary is flat or curved, the amount of coding

work and computing time are the same. Some disadvantages of the IMM have also been

revealed. The accuracy of the computations depends on the value of the mean density ratio

in the wall region. Also there is an one-grid-size error in the wall position. An extra wall

region is needed for the infinite wall case. Finally, a staircase approximation is used to

approximate curved boundaries. This paper has demonstrated that the IMM is a promising

method for the simulation of acoustic reflection, scattering, and diffraction problems.
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NUMERICAL PREDICTION OF THE NOISE PRODUCED BY A
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Abstract

Supersonic rectangular jet flow and far field noise pre-

dictions are made by solving the governing equations

using advanced numerical techniques on parallel pro-
cessors. The computational domain begins at the jet

nozzle exit and contains the jet plume and a small re-

gion of the acoustic near field. The equations solved
for the interior grid points are the full 3D Navier Stokes

equations. The far field boundary points are determined

by unsteady, nonlinear characteristic based nonreflect-

ing conditions. To model the jet nozzle exit flow, a set

of equations are developed to simulate many features
of this flow that have been experimentally observed to

influence the jet and its radiated noise. A Kirchhoff
method is used to determine the far field noise from in-

formation extracted from the finite computational do-

main. Each set of governing equations is spatially dis-

cretized by a sixth order central difference scheme and

advanced in time using fourth order Runge-Kutta in-

tegration. Spurious high wave number fluctuations are

damped by a nonlinear dissipation algorithm that has
a minimal effect on the acoustic solution. The code has

been efficiently implemented on the CM5 using CMFor-

tran (essentially HPF) and should be easily ported to

platforms running HPF (such as the SP2). Numerical
results indicate that the algorithm, which contains no

model constants (aside from the nozzle exit conditions),

is capable of reproducing many experimentally observed

rectangular jet flow and noise features.

1 Introduction

Jet noise analysis and reduction have been topics of

research since the introduction of the jet engine as

a propulsion device for aircraft during World War II.

Many tools have been developed and incorporated into
the design process to reduce the annoyance of jet noise.

The Federal Aviation Administration began placing

"Doctoral Candidate, Member, AIAA
tAssociate Professor, Senior Member, AIAA
o@ 1996 by Chyczewski and Long. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

strict regulations on the noise produced by aircraft 1 and

this has caused a renewed interest in noise prediction in

the scientific community. This is particularly true in

light of the national interest to develop the High Speed

Civil Transport (HSCT). Noise reduction is considered
to be a crucial technology required for a viable design.

The prediction strategy that is currently receiving the
most attention is direct simulation. Jet noise research

has included many different implementations of this ap-

proach. 2-5 The implementation under investigation in

this paper solves the 3D full Navier Stokes equations in
a domain that includes the noise source region and a

small portion of the acoustic field. The acoustic near
field solution is then used as an input to a Kirchhoff
method to determine the far field noise.

Consistent with experimental evidence, 6'7 the noise
source is assumed to be dominated by the evolution of

large scale coherent structures in the jet shear layer and

thus only these scales are resolved. The influence of the
small scales is assumed to be represented by numerical

dissipation. Thus, no turbulence model is employed and

consequently, there are no adjustable model constants
used in the interior domain.

The computational domain in which the Navier

Stokes equations are solved begins at the jet nozzle

exit plane. A model is therefore required for the nozzle
exit flow and can have an appreciable effect on the nu-
merical solution. The effects of nozzle exit conditions

on experimental and numerically simulated jets have

been studied by many investigators, s-15 Hussain and

Husain s found experimentally that the development of

the jet depends on the nozzle boundary layer momen-
tum thickness distribution. The azimuthal variation has

been shown by them to produce noticeable effects on the

spreading rate of elliptic jets. These effects are the re-
sult of the influence of the momentum thickness on the

generation of coherent structures. King et alJ 2 found

that nozzle imperfections as small as 0.2% of the nozzle

exit diameter may have a significant effect on the de-

velopment of supersonic axisymmetric jets. They used

this information to develop methods of enhancing jet
mixing. The initial turbulence intensity was found have

a significant effect on the turbulence amplification rate



in thenear-fieldregionof thejet by Grinsteinet al)l
Quinn_4founddifferencesin thespreadingrateof two
jetsoperatingunderessentiallythesameflowconditions
andgeometry.Thesediscrepancieswereattributedto
facilitydifferences.

Thisexperimentalevidencesuggeststhat thesalient
featuresof a laboratoryfacilitywill haveanapprecia-
bleeffecton the developmentof a jet. Theseeffects
canbeobservedin theformof varyingpotentialcore
lengths,turbulencelevelsandjet spreadingrates.To
compoundthispotentialproblem,thenozzleexitcon-
ditionsof the rectangularjet simulatedin this paper
arenotdefinedprecisely.Themeasurementtechniques
availableto Kinzie1_did not permita comprehensive
studyof thenozzleexit. Dueto thisuncertainty,agen-
eralmodelforthenozzleexit flowhasbeendeveloped
that canturn onor offsomeof thefeaturesthat have
beenobservedto significantlyinfluencethejet develop-
ment.Theresultspresentedin thispaperareconfined
to studyingtheeffectofmodalexcitation.Theeffects
of nozzleexit turbulencelevelsandcornervorticesare
discussedinChyczewski(1996))7

Sincethecomputationaldomainis limitedto just a
smallregionof theacousticnearfield,amethodisre-
quiredto extrapolatethesolutionto thefar field. In
thisworktheKirchhoffmethodis employed.Is It con-

sists of constructing a surface S on which the acoustic

solution can be reliably calculated. The acoustic solu-

tion at any location outside of this surface can then be

determined by the Kirchhoff formula. The solution is
exact for sound radiation outside of a surface S if that

radiation is governed by the convective wave equation.

However, in the application of this method to the jet

noise problem, finding such a surface is difficult. This

issue has been addressed previously by some investiga-
tors who have found that the far field solution is not

very sensitive to the location of the surface if some pre-
cautions are taken. Lyrintzis and Mankbadi 19 found

that placing the surface at least one diameter away from

the jet centerline is sufficient to obtain accurate solu-
tions. Freund et al. _° performed a study analyzing the

effects of using open Kirchhoff surfaces and found that

it does not introduce significant errors if the surface

passes through the region between the noise source and
the observer.

In the next section, the governing equations are de-

scribed. This consists of discussing the specific form of

the Navier Stokes equations, presenting the boundary

equations, which includes the model nozzle exit condi-

tions, and finally presenting the Kirchhoff formulation
used here. In section 3 the numerical approach is out-

lined. Special attention is given to the artificial dissi-

pation model. Next, in section 4, rectangular jet noise

prediction results are presented and compared to exper-
imental data. Finally, in section 5, some conclusions are

drawn.

2 Governing Equations

A supersonic rectangular jet flow is a nonlinear, vis-

cous, unsteady, 3D problem. As such, it is governed by

the full, compressible, 3D Navier Stokes equations. A

nondimensional conservative form of these equations is

used in this work (see Hoffmann(1989)21). By them-

selves, these equations are not sufficient to model the

jet problem. Boundary conditions are required to al-
low flow and acoustic waves to pass through the far

field boundaries of the computational domain as well as

to model the flow entering the domain from the nozzle

exit. This section presents these equations as well as the

Kirchhoff formulation used to extrapolate the acoustic

solution to the far field.

2.1 Nonreflecting Boundary Conditions

Several approaches to the specification of nonreflect-

ing conditions at far field boundaries have been devel-

oped. These approaches can be classified into three cat-

egories: asymptotic solutions, 22'23 Fourier decomposi-
tion 24,25 and quasi one-dimensional analysis. 2e'27 The

most recent set of conditions based on the asymptotic

solution of the linearized Euler equations are due to

Tam and Webb. 23 These asymptotic conditions have

been quite successful at reducing boundary reflections

for many model problems.
Giles :4 derived approximate unsteady boundary con-

ditions for two-dimensional problems by performing a

Fourier decomposition of the linearized Euler equations.

They have been applied to turbomachinery problems by
Giles and have been found to be effective. When imple-

mented with a buffer zone, these conditions have been

able to permit nonlinear vortical structures to leave a

computational domain with little reflection. 2s
A drawback of both the asymptotic and Fourier meth-

ods is that their derivation employs a set of equations

that have been linearized with respect to a reference so-

lution. In many cases, such as the rectangular jet prob-
lem under consideration here, the reference solution is

not known a priorz and must be developed as the equa-

tions are integrated. Experimentation with the rectan-

gular jet problem suggests that asymptotic and Fourier

methods are not capable of establishing a reasonable

reference, or time averaged, solution when the initial

condition is a quiescent fluid.
Given this difficulty, the quasi one-dimensional

boundary procedure developed by Thompson 26'2v is

employed. The approach consists of decomposing the

full nonlinear Euler equations into modes of definite ve-

locity and specifying nonreflecting conditions for those

modes that have a velocity directed into the computa-
tional domain. These conditions have been shown to be

able to allow large amplitude disturbances to leave the
domain with little reflection. 2_



2.2 Nozzle Exit Conditions

A completeprescriptionof the nozzleexit conditions
requiresthespecificationof bothsteadyandunsteady
characteristics.Theyaredescribedin thefollowingtwo
subsections.

2.2.1 Steady Nozzle Conditions

A nearly uniform velocity profile was found at the noz-

zle exit by Kinzie. 16 This indicates that viscous effects

are confined to locations very close to the nozzle wall.

Thus the simulated jets use uniform profiles for density,

axial velocity and pressure. Accurate measurements of
momentum thickness variations that may exist around

the nozzle lip were not performed and are thus not ac-
counted for in the nozzle model.

The values of the exit variables are found from the

experiment. The exit Mach number, Mj, is 1.54, the

acoustic speed of the jet is _j = 0.82c_ and since the

jet is ideally expanded, the jet exit pressure is the same

as the ambient pressure (fij = poo). From this informa-

tion, the steady exit density and velocity can be found.

In this paper, the nozzle exit flow is assumed to be

purely axial. The effects of lateral exit flow compo-

nents induced by nozzle exit corner are considered in
Chyczewski(1996).17

2.2.2 Unsteady Nozzle Conditions

There is a very limited amount of information available

in the literature that discusses the unsteady features of a

supersonic nozzle exit flow. In fact, the authors have not

seen any published data that characterizes the unsteady
features to the extent that is required to reproduce the

nozzle exit conditions completely. This is most likely

due to the extreme difficulty of collecting such data.
To compensate for this lack of information, a general

set of unsteady nozzle exit conditions have been devel-

oped that can specify the disturbance spatial distribu-

tion, amplitude, temporal behavior and phase relation

around the nozzle lip. By controlling the phase relation,

different modes (flapping or varicose) can be excited at
the nozzle exit. This is similar to the artificial excita-

tion used by many experimentalists. 7' 16,28-30 With this

model, many different features can be investigated. In

this paper, the investigation is confined to studying the
modal excitation.

The velocity perturbations are calculated from the

following relation :

4 2
uj

V' W' -_a _ ciAi _ sin(27rftt + ¢_ + _,)U l , or ----

i=1 I=1

The contributions of each of these terms is given in the

following sections.

Temporal Behavior.

The inner summation in equation 1 is over contri-

butions from two characteristic frequencies. These two

frequencies are the screech tone frequencies found in the
minor axis plane of the experimental jet. 16 These fre-

quencies can also be determined using the linear shock
cell model and weakest link theory developed by Tam. sl

For our problem these frequencies are ft = 9606 Hz

(Strouhal number = 0.31) and f2 = 26367 Hz (Strouhal

number = 0.84).

A random component to the excitation is supplied by

¢_ in equation 1. It is initialized to zero at the begin-

ning of each run. It is then updated at each timestep,

n, by the following :

¢_ _- ¢?-1 --t-0 (2)

The amplitude of the phase shift between time steps 8

is 5.4 degrees. This value was found to give broad fre-

quency spectra with an upper band limit that is near

the highest frequency that the grid and scheme can re-
solve.

(1)

Spatial Distribution.

The perturbation on the entire nozzle lip is deter-

mined by building it up from the contributions of the

four walls. This is done in equation 1 by the outer sum-
mation. Ai is the spatial amplitude function for each of

the walls. It is a Gaussian function centered on the lip
line of each wall. The half width of the Gaussian is one

tenth of the short dimension of the nozzle. The function

is tapered to zero amplitude near the corners of the noz-

zle. This spatial function is selected since a Gaussian

is a representative distribution for wall bounded shear

layer perturbations (see Kinzie(1995)16 for example).

Mode Excitation.

Two different modal excitations are considered in this

paper. These are the varicose and flapping modes and
have been found in the experimental jet by Kinzie. 16

The varicose mode is characterized by symmetric shed-

ding of coherent structures from the nozzle lip. In con-
trast, the vortex shedding is asymmetric for the flapping

jet case. This is illustrated in figure 1. These different

modes are excited in the jet by controlling phase dif-

ferences between the walls of the nozzle. The phase

difference is controlled by the angle _3_in equation 1.
Whether or not there is a velocity component contribu-

tion to the perturbation from a wall is determined by

the parameter ci. The values of these two parameters

for each of the velocity components is given in tables 1

and 2 for the varicose and flapping modes.
The final parameter in equation 1 is a. It speci-

fies the peak amplitude of the velocity perturbation. A
value of 0.02 is used and corresponds to an RMS fluc-

tuation level near 1.36 percent of the exit velocity. The



Figure1:Vortexsheddinginvaricose(top)andflapping
(bottom)excitedjets.

cl c_ c3 c4 81 8_ 83 84
u _ 1 1 1 1 0 0 0 0

v' 1 0 1 0 _ 0 -_ 0
w' 0 1 0 1 0 -_. 0 _.

Table 1: Values of ci and 8i for varicose mode excita-
tion.

RMS levels vary slightly from run to run due to the
random nature of the excitation.

The instantaneous velocities are obtained by adding

the steady contribution to the perturbation. Given

these velocities, the pressure and density are found from

conditions of constant total temperature and entropy.
The first condition was found to be reasonable for a jet

flow under these conditions by Troutt and McLaugh-

lin. 32 The assumption of isentropic excitation is jus-

tified since these perturbations most likely originated

from acoustic disturbances upstream of the nozzle exit.

2.3 Kirchhoff Formulation

The moving surface formulation given by Farassat and

Myers is for a rigid surface in rectilinear motion is em-

ployed. It gives the acoustic pressure p' at location
and time t as a function of the pressure on a suitably

defined surface S (where _ is outside of S):

4_rp'(_,t) = r(1 --Mr) r-

r_(i -_)j T. dS (4)

where

= I_, ¢ = _- if(T), M_ = _. 7/_, (5)

E1 = -a. Vv' + (_2. a)(_ Vv')

[cosO-_.a _.g] Op'

(6)

(7)

Cl C2 C3 C4 131 82

u' 1 0 1 0 0 0
7r

v _ 1 0 1 0 _ 0
w t 0 0 0 0 0 0

83 84
7r 0

0

0 0

Table 2: Values of ci and 8i for flapping mode excita-
tion.

1 - M 2

E2 - (1 - Mr) 2"(c°s0 - _" _) (8)

M is the Mach number of the moving surface which

for the static jet problem is zero. The vector _ is the
vector difference between the observer location and the

location of the Kirchhoff surface element (it varies with

each location on the surface), g is the normal vector

pointing out of the Kirchhoff surface, the angle 0 is
measured between the vectors V and _, and coo is the

freestream sound speed. The integrands are evaluated
at the Kirchhoff surface emission time r* which, for a

stationary surface, is given by

T" = t - _l_oo (9)

A complete description of the coupling of the Kirchhoff

method into the Navier Stokes code is given in Ozyoruk
and Long 33 and is therefore not described here.

3 Numerical Algorithm

The governing equations are discretized in a finite differ-
ence context using fourth order accurate Runge-Kutta

time integration and sixth order accurate spatial dis-

cretization. The computational domain is illustrated in

figure 2 which also shows the coordinate system. The
center of the nozzle exit is located at (x, y, z) = (0, 0, 0).

Details on the grid generation strategy can be found in

Chyczewski and Long(1995) 34 and Chyczewski(1996)J 7

3.1 Artificial Dissipation

A desirable feature of this numerical algorithm is the

explicit control of the amount of dissipation applied to

the scheme. Unlike upwind methods, Runge Kutta -

central difference techniques contain very little implicit

dissipation. Instead, explicit filters are used for stabil-

ity and to prevent odd-even decoupling errors. Selec-

tion of an appropriate dissipation scheme is paramount
in calculations where one wishes to extract the low am-

plitudes and high frequencies associated with acoustics.

Jameson et al. 3_ proposed a blend of split second and

fourth order dissipation. While this dissipation is ro-

bust near discontinuities, it may significantly contami-
nate the acoustic solution.



Figure2: Threedimensionalviewof the grid.

A combination of second and sixth order dissipation is

used here. This dissipation has been applied to the non-

linear acoustic benchmark problems 34 and has proven

capable of propagating acoustic waves in the presence

of strong discontinuities. It is applied to the scheme as

a correction to the residual and takes the following form

V(Q)_,_,k = ve(q),,j,k + :D,(q),,_,k + v_(q),,_,k (10)

Each term is determined as follows (using :De as an ex-

ample) :

:D¢(Q),j,k = e(2):D_(Q),,J,k + e(s):D_(Q),d,k (11)

where

1
:D_(Q)_,j,k = _-_(qi+l,j,k - 2qid,k + qi-l,3,k) (12)

and

1
:D_(Q)id,k = _-_(-20Qid,k + 15(Qi+l,j,k + Qi-l,j,k)

-6(Q,+2d,k + Qi-2,j,k) + (Q_+3,j,k + Qi-3,_,k)) (13)

The coefficients are determined in a manner very similar

to that used by Jameson:

e_2) = k(2)max(ui-l, vi, ui+l) (14)

and

el _) = max(0, k (6) - el2)) (15)

where the values of k (2) and k (4) used here are 1.5/4

and 1.5/256, respectively. The flow gradient sensor u is

given by

{f?i-l,j,k - 2_3i.j,k + _i+l,j,k[ (16)
vi = _i-l,j,k ÷ 2Bi,j,k ÷ _i+l,j,k

is set equal to the total pressure. The Jameson
scheme 35 uses the static pressure. For our jet calcu-

lations, the highest flow gradients are found near the

jet exit. Since the static pressure is essentially uniform

there (ideally expanded jet), using the static pressure is

inappropriate.
The second order dissipation coefficient, e (2), is ex-

plicitly set to zero in regions where the flow is suffi-

ciently smooth, i.e. v is below a specified value. To

minimize the size of the region with second order dissi-

pation, this value should be raised to a maximum that

results in a stable scheme. An appropriate value has
been determined tobe 0.0050 by numerical experimen-

tation. The locations where the second order dissipation

is necessary is found to be confined to certain locations

in the jet core and should have no effect on the radiated

acoustic solution. This is illustrated in figure 3 where

a snapshot of the locations in the minor plane where
second order dissipation is applied at a typical instant.
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Figure 3: Snapshot of the locations in the minor axis

plane where second order dissipation is applied.

4 Results

In this section, rectangular jet simulation results are

presented and compared to experimental data. The re-
sults are obtained by executing a run that consists of

three phases. Since the initial condition of the sim-

ulation is a quiescent fluid, one phase is required to
allow transients to leave the domain and establish the

jet. When the domain is free of transients, the Kirch-
hoff integration is started. There is a transient conver-

gence period required by Kirchhoff methods which is
based on the furthest distance between the Kirchhoff

surface and an observer location. 3a The time required

to converge the Kirchhoff solution constitutes the sec-
ond phase. The final phase is used to sample variables

in the jet and in the near and far acoustic fields. Only

the data collected in the last phase has been used to

generate the results presented here.
Figure 4 shows the centerline velocity distributions

for the varicose and flapping excited jets and compares
them to the experimental data. 1° The varicose jet sim-

ulation results are shifted -2Deq to match the potential



corelengthof the experiment.Thiscommonproce-
dureis usedsothat the decayratesof the centerline
velocitycanbecompareddirectly.Thisshiftisapplied
to all comparisonsofthevaricoseexcitationsimulation
withexperimentaldatapresentedthroughoutthispa-
per. Theflappingexcitedjet doesnotrequirea shift.
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Figure 4: Centerline velocity distributions.

The comparison between the simulations and experi-
ment after the end of the potential core shows that the

simulation overpredicts the turbulent mixing slightly for
both of the mode excitations since their centerline ve-

locities decay at a faster rate. A distinguishing feature
between the two simulation profiles is that the flapping

excitation case has noticeable oscillations in the poten-

tial core region. These oscillations, also present in the

experimental data, are due to a shock cell structure.

They are also present to a lesser degree in the vari-
cose excitation case profile. In the experimental jet,

this structure most likely originates in the throat of the

nozzle as a result of an imperfect nozzle design.

Recall that the static pressure prescribed by the

steady nozzle exit conditions is set to the ambient pres-
sure; however, superimposed on this steady condition

are perturbations. These perturbations are likely re-

sponsible for the weak shock cell structure found in the

simulated jet. Why the flapping mode excitation pro-
duces a stronger shock cell structure is not understood.

It is interesting to note, however, that the simulation

reproduces fairly accurately the amplitude, wavelength

and phase of the shock cell structure (given the limited
resolution of the experimental data). This may suggest

that the mechanisms producing the shock cell struc-

tures in both jets are similar and that the experimental
shock cell structure is not solely due to an imperfect

nozzle design.
Since the evolution of large scale turbulent structures

plays such an important role in supersonic jet noise gen-

eration, some of the simulated properties of these struc-
tures have been determined and compared to experi-

mental data. In his experiment, Kinzie 16 used hot wire

anemometry to measure the fluctuations in the shear

layer. In a compressible flow, these wires are sensitive

to the mass flux that is normal to the wire. Measure-

ments were made in both the major and minor axis

planes of the jet. When performing major axis plane

measurements, the hot wire was oriented parallel to the

minor axis plane, i.e., it was parallel to the wall from

which the shear layer was emanating. This was done to

improve the resolution of the shear layer measurements.

When arranged in this manner, the normal component

of the mass flux consists of two velocity components,

i.e., the hot wire is sensitive to :

m = X/(pu) 2 + (pw) 2 (17)

Figure 5 shows the axial development of the RMS of

the variable m defined in equation 17 (normalized by
the jet exit mass flux) in the major axis plane. The val-

ues plotted in the figure are the maximum RMS values

through the shear layer for a given axial location.
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Figure 5: Maximum RMS levels of the mass flux normal
to the hot wire in the major axis plane.

The most apparent observation made from this fig-
ure is that the simulation over predicts the peak am-

plitude of the perturbations by approximately a factor
of 2. Thus, there is significantly more turbulent mix-

ing in the simulated jet compared to the experimental

one. This is consistent with the centerline velocity decay

profile presented earlier. A possible explanation for this

discrepancy is the absence of a sub-grid-scale (SGS) tur-
bulence model. In turbulent flow, the large scales of the

turbulence are continually acted on by the finer scales.

These fine scales behave as a dissipation mechanism for

the larger scales. The algorithm used in this research
does not address this issue explicitly. The algorithm

applied here relies on the dissipation supplied by the
numerical scheme to behave like the sub-grid scales of
the true flow. The difference between the artificial and

SGS dissipation is quantified in Chyczewski(1996)17 and
will not be discussed in detail here. It will just be men-

tioned that a comparison of these two dissipation terms

reveals that the SGS dissipation is usually larger than

the artificial dissipation but the difference is not consid-

ered significant enough to account for the discrepancies
found here. The high amplitude perturbation found in

the simulation may also be explained by the nozzle exit



conditions.Bermanet al.36foundthat changingthe
exit conditionsfor their subsoniccalculationscanre-
ducethepeakamplitudeof theperturbations.

Asidefromthepeakamplitudediscrepancy,a com-
parisonofthetrendsin figure5betweenthesimulation
andthe experimentis encouraging.Thereis a high
amplitudegrowthrateprior to theendof thepoten-
tial core,thevalueofwhichcompareswellbetweenex-
perimentandsimulation.After thisregion,thereis a
saturationperiodandfinallyagradualdecayin theam-
plitude.

Thepowerspectraldensityofthetimeseriesusedto
determinetheRMSvaluesdiscussedaboveforthevari-
coseexcitationin themajoraxisispresentedin figure
6. Thesampleusedto determinethesespectraspans
thefinalphaseof therundescribedat thebeginningof
this section.Thisphaseconsistsof 32,768timesteps.
In orderto makehandlingthedatalesscumbersome,
asamplewastakenonceevery16timesteps.Thispro-
cedurecompromisesnoinformationsincethesampling
frequencyis still muchhigherthanthefrequenciesex-
pectedto beproducedbythejet. Thus,the lengthof
theentiresampleis2048steps.Toreducetheerrorsas-
sociatedwithusingafinite(andrelativelysmall)sample
record,the2048sampleisdividedinto15recordsthat
contain256steps.Theintervalsoverlaponeanotherby
128elements.Forexample,thefirst intervalcontains
samples1through256,thesecondcontains129through
384,andsoon. Thespectrapresentedin figure6 are
obtainedbyaveragingthespectraobtainedfromeachof
the15intervals.A Hanningwindowis alsousedto re-
ducetheerrorsassociatedwith thefiniterecordlength
(seeBendat(1986)37for example).Sincetheareaun-
derthepowerspectraldensityis equalto theRMSof
thefluctuation,whichhavebeenpreviouslydiscussed,
theexperimentalspectrahavebeenscaledsothat they
haveRMSvaluesequalto thesimulation.Thisallowsa
directcomparisonofthespectraldistributionofenergy.
ThespectraarepresentedasafunctionoftheStrouhal
number,whichis theratioof thefrequencyto a char-
acteristicfrequency.Thecharacteristicfrequencyused
in thesespectrais31387Hz,whichis theexperimental
jet exit velocitydividedby theequivalentdiameterof
thenozzleexit.16

The comparison between the experimental and simu-

lation spectra is favorable. In both the experiment and
the simulation the energy moves to lower frequencies at

the larger axial locations. This also agrees with obser-
vations made by Troutt. 20 The spikes in the major axis

experimental spectra near a Strouhal number of 0.5 are
due to the shock cell structure found in the jet. They

are the screech tones due to the phase locking of the

radiated noise from the interaction of the large scale
structures with the shock cell structure and the excita-

tion of instability waves at the nozzle lip. These tones

are most likely absent from the simulated jet due to its
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Figure 6: Power spectral density (PSD) of the mass flux
in the at the maximum RMS location through the shear

layer in the major axis plane for the varicose excitation.

The numbers to the right of each spectra denotes the
axial location. The heavy lines are the experimental

results.
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Figure 7: Near field sound pressure level (SPL) contours

in the minor axis plane of the simulated jet excited by
a varicose mode.

relatively weak shock cell structure.

In figure 7 sound pressure level (SPL) contours are
shown in the minor axis plane of the simulated jet ex-

cited by a varicose mode. The definition of an SPL used

here, consistent with Kinzie, 18 is :

Prms

sPa = 20 logm[ p-_e/]

where

P_e/= [ Pch ](20 x 10-6 ) N
Pa.,,

(18)

(19)

The pressure in the anechoic chamber, Pch, during his

experiments was 3080 N/m 2. The atmospheric pres-

sure, Patm, is 1.01325 x 105 N/m 2. The root mean

square of the pressure, Prms, is determined in the same
manner as the data used for the hot wire comparisons.

Consistent with the experimental data, 1_ the noise ap-

pears to be generated at the end of the potential core
and is directed in the downstream direction.

The remainder of this section will present and discuss

far field noise predictions. For the far field noise predic-

tions presented here the Kirchhoff surface is placed as



closeto thejet aspossiblewithoutintersectingregions
of the jet plumewheretherearesignificanthydrody-
namicfluctuations.Closeproximityto thejet isdesir-
ablesincethegridresolutionis thefinestthere.Also,
the closerthesurfaceis to the jet, the lessthepres-
surewaveshaveto travelbeforereachingthesurface.
Thus,thenumericaldampinganddispersionerrorsare
minimized.It is importantnot to placethesurfacetoo
closeto thejet sincetheKirchhoffformulamayinter-
pretsomehydrodynamicfluctuationsasradiatingones.

TheentireKirchhoffsurfaceisdefinedbyfoursur-
facesegments.Twosurfacesarein the(i,j) planeand
twoarein the(i, k) plane (i is the axial index). The

two end planes (perpendicular to the jet axis) are omit-

ted. Since the noise propagation is predominantly in

the downstream direction, the downstream end plane

should not make any contributions to the noise levels

at the observer locations used here (described below).

The grid used in the present study (shown in figure

2) is highly clustered near the nozzle lip region. This

stretching varies in the axial direction so that a con-
stant j or k grid line gradually moves away from the jet

axis. This is very convenient in terms of deciding how
to define the Kirchhoff surface. Each of the four surface

segments can be placed very near the nozzle lip line at

the nozzle exit plane. As the jet develops in the ax-

ial direction, and the mixing increases, the surface will

gradually move away from the jet axis so that it never

does intersect high mixing regions.
The Kirchhoff surface is illustrated in figure 8. The

extent of the surface in the axial direction is from x =

1Deq to 20Deq. The surface is not extended to the wall
so that the possibility of any effects it may have on the
acoustic solution is reduced. The surface terminates at

20 diameters to reduce the effects of any reflections that

may occur from the downstream boundary. The range
of the domain covers the axial region where turbulent

mixing noise is known to be generated, i.e., the region

near the end of the potential core.
The lateral locations of the surface were determined

by considering the mass flux perturbation levels. Fig-
ure 9 shows contours of the RMS of such perturbations

in the major axis plane of the jet excited by a varicose

mode. The grid (showing every tenth i grid line) is over-

laid on the figures. The arrows (between x = llDeq and

12Deq) point to the grid lines that seem to be optimal
for the planes of the Kirchhoff surfaces perpendicular

to each figure. It is apparent that the surfaces do not

intersect any region where significant fluctuations are
found. These appear to be the optimal locations and
are used for the calculations. Similar reasoning is used

in the minor axis plane. In a study of the sensitivity

of the noise predictions to the location of the Kirchhoff
surface, Lyrintzis 19 found that there is little difference

between the results if the surface is placed at least one

diameter away from the jet axis.

Figure 8: The surface used to for the far field (Kirch-

hoff) calculations.
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Figure 9: RMS of the mass flux perturbations in the

major axis plane for the jet excited by a varicose mode.
The values are normalized by the jet exit mass flux.
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Figure 10: Far field SPL levels for the varicose excita-
tion.
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Figure 11: Far field SPL levels for the flapping excita-
tion.

The observer locations are selected to match the mi-

crophone stations used by Kinzie. x6 They consist of

locations on an arc 25Deq away from the center of the
nozzle exit. The angular range is 15 to 50 degrees mea-

sured from the jet axis. Overall sound pressure levels in

the far field are presented in figures 10 and 11 for the

varicose and flapping excitation cases and compared to

the experimental data. The figures are a function of

the angle the observer makes with the jet axis and are

commonly referred to as directivity plots.
For the locations close to the jet axis (i.e., small angle

_), the simulation overpredicts the experimental data
for both the varicose and flapping cases. This is most

likely due the higher amplitude instability waves (coher-
ent structures) found in the simulated jet. Recall that

the simulation predicts a peak instability wave ampli-

tude that is approximately twice that of the experimen-

tal jet• If the peak amplitude in the experimental jet
is scaled by a factor of two, and one assumes that the

noise is dominated by turbulent mixing noise, then the

radiated pressure amplitude should be scaled by a factor

of four (as deduced from the acoustic analogy3S). This
results in a twelve decibel increase in the radiated noise.

If the noise is dominated by Mach wave emission, then

the instability wave analysis 39 predicts that the radi-

ated pressure be scaled by a factor of two, which results
in a 6 decibel increase in the far field noise. The peak

differences between the simulation and experiment for

the varicose and flapping excited jets are 7 and 12 dB,

respectively. These differences suggest that the flapping

jet has weak Mach wave radiation while the varicose jet
noise is dominated by Mach wave radiation.

The good correlation between the discrepancy in the
noise source prediction and the discrepancy in the far

field noise prediction leads one to conclude that the al-

gorithm is capable of predicting the far field noise ra-

diation for a given source amplitude. This argument

is strengthened by the good agreement in the trends of

the simulated and the experimental jets. Considering

first the comparison for the jet excited by a varicose

mode (figure 10), the angle of peak noise radiation is

correctly predicted to be near 25 degrees. The noise

is more directional in the simulated jet, however, com-

pared to the experimental one. Recall from the intro-

duction that turbulent mixing noise is fairly directional.
The shock cell structure in the experimental jet may

explain why its noise is less directional. This structure

leads to the additional shock associated noise genera-

tion mechanisms. Since this type of noise has upstream

propagating components, it will tend to make the noise
less directional when the contributions of all of the noise

sources are combined. Although there is also a shock

cell structure in the simulated jet excited by a varicose

mode, it is comparatively weak.

The spectra of the far field noise in the major axis

plane is shown in figure 12 for the simulated jet ex-

cited by a varicose mode. Like the hot wire spectra

presented earlier, screech tones are apparent in the ex-
perimental data. Ignoring these tones, however, like the

experimental jet, the simulated one does predict a fairly
broad spectral peak centered near a Strouhal number of
0.2.

5 Conclusions

In this paper a general algorithm for the prediction of

supersonic jet noise is presented. The algorithm con-
sists of the numerical simulation of the noise sources

and sound radiation to the acoustic near field. The

time dependent near field solution is then passed on to
a Kirchhoff formulation to determine the far field noise.

The algorithm has been applied to a perfectly expanded,

cold, supersonic rectangular jet problem. This geome-

try and set of flow conditions provide two advantages.

The first is that turbulent mixing should be the sole

noise generation mechanism present. This type of noise
is found in the lower frequencies of the spectrum and

therefore reduced the grid resolution requirements. The

second advantage is that these conditions correspond to
those of an experiment that has been conducted recently

at Penn State. Thus, a comparison with the experi-

mental data has been possible. This comparison has

revealed that the algorithm is capable of reproducing
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Figure 12: Far field noise spectra in the major axis plane

for the flapping excitation. The numbers to the right

of each graph denotes angular location in degrees. The

heavy lines are the experimental spectra.

many of the flow and noise features found in the ex-

perimental jet. One discrepancy is that the simulation

overpredicts the amplitude of the instability waves by a
factor of two. Thus, future work on this project should

investigate the reasons for this discrepancy and devise
methods to eliminate it.
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